CS 241: Dining Philosophers

This week, we are going to be focusing on deadlock: both detection and the conditions to get out of it.

Coffman Conditions

What are the four Coffman conditions, and what do they mean?

Give one example for each Coffman condition in the following scenario: Snow shovelers have a limited number of snow shovels. They get paid by how much snow they shovel, meaning that they would all like to get paid a lot and roughly the same amount.

Detection: Resource Allocation Graphs

- P1 acquires R2
- P2 acquires R1
- P3 acquires R3
- P3 acquires R4

- P2 waits for R3 P1 waits for R4
- P3 waits for R1
- P3 waits for R2

Failed Solutions: Simple

Draw the "grab left, grab right" solution's deadlock state (circle the philosopher and the fork).

Figure 1:

Failed Solutions: Livelock

Circle the livelock fork condition (should look familiar).

Coffman Condition Broken:

Advantages:

Drawbacks:

Stallings' Solution

Is there a way to circle philosophers and forks to cause deadlock?

Coffman Condition Broken:

Advantages:

Drawbacks:

Resource Hierarchy

Number the forks. Following the rules of the hierarchy guideline, is there a way to circle the forks to get deadlock?

Coffman Condition Broken:

Advantages:

Drawbacks:

Figure 3: