
CS 241: Synchronization

This week, we are going to be building synchronization primitives and using
mutexes in order to implement some basic data structures.

Warm-Up Questions

What is a critical section? How can we protect a critical section?

How do C mutexes work with shared variables? Does each mutex
know what data it’s protecting?

What is a condition variable? Why do we need one? Why should
we wait on condition variables in a loop?

What is a semaphore? What methods may block? What methods
do not block? What is a binary semaphore? (For a binary semaphore
that starts at 1, always sem_wait(...) before sem_post(...).)

The Ambitious Thread

The ABA problem is a very tricky problem in concurrent programming.
Reusable barriers aren’t inherently the same thing, but pseudo-ABA prob-
lems go something like this:

• Thread #1 reads memory address x and gets the value A
• Thread #1 gets stopped (preempted) and Thread #2 starts running
• Thread #2 sets x to B, and a while later, back to A
• Thread #1 resumes running, reads x, and gets A again
• Thread #1 thinks x hasn’t changed, even though it has!

So, that leads to the following question: why can’t we implement a reusable
barrier_wait like this?
pthread_mutex_lock(&m);
remain--;
if (remain == 0) {

pthread_cond_broadcast(&cv);
remain = num_threads;

}
else {

while(remain != 0) {
pthread_cond_wait(&cv, &m);

}
}
pthread_mutex_unlock(&m);

Try to give as much detail as possible. Multi-threaded programming
is hard, so describing the problem in as much depth and detail on
paper will prevent race conditions.



Algorithm Design

Before you write your queue or semamore, write out the steps. Create a
list of every check/function call you make.
void semm_post(semm_t *sem)

• Check if the semaphore ptr is null (not entirely necessary)
• Increment the semaphore count
• If semaphore count is _, I should . . .

void semm_wait(semm_t *sem)

void queue_push(queue_t *que)

void *queue_pull(queue_t *que)

Thread-Safe Queue

In multithreaded code, there is a strong notion of ownership when it comes
to memory and information. What would be the problem with implementing
int queue_size(...)? How about void* queue_peek(...)? How
might we otherwise tell that the queue is empty? (Hint: How do you know
that a C string is over?)


	CS 241: Synchronization
	Warm-Up Questions
	The Ambitious Thread
	Algorithm Design
	Thread-Safe Queue


